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The Digital Video Broadcasting (DVB) Project was founded in 1993 by the
European Telecommunications Standards Institute (ETSI) with the goal of
standardizing digital television services. Its initial standard for satellite de-
livery of digital television, dubbed DVB-S, used a concatenation of an outer
(204,188) byte shortened Reed Solomon code and an inner constraint length
7, variable rate (r ranges from 1/2 to 7/8) convolutional code [1].

The same infrastructure used to deliver television via satellite can also
be used to deliver Internet and data services to the subscriber. Internet over
DVB-S is a natural competitor against cable modem and DSL technology,
and its universal coverage allows even the most remote areas to be served.
Because DVB-S only provides a downlink, an uplink is also needed to enable
interactive applications such as web browsing. The uplink and downlink need
not be symmetric, since many Internet services require a faster downlink.

One alternative for the uplink is to use a telephone modem, but this does
not allow for always-on service, has modest data rates, and can be costly in
remote areas. A more attractive alternative is for the subscriber equipment
to transmit an uplink signal back to the satellite over the same antenna used
for receiving the downlink signal. However, given the small antenna aperture
and requirement for a low-cost, low-power amplifier, there is very little margin
on the uplink. Therefore, strong FEC coding is desired. For this reason, the
DVB Project has adopted turbo codes for the satellite return channel in its
DVB-RCS (Return Channel via Satellite) standard [2].

At the same time that the DVB Project was developing turbo coding tech-
nology for the return channel, it was updating the downlink with modern cod-
ing technology. The latest standard, called DVB-S2, replaces the concatenated
Reed-Solomon/convolutional coding approach of DVB-S with a concatenation
of an outer BCH code and inner low density parity check (LDPC) code [3].
The result is a 30% increase in capacity over DVB-S. In this chapter, the
coding strategies used by both DVB-RCS and DVB-S2 are discussed.
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1 DVB-RCS

The DVB-RCS turbo code was optimized for short frame sizes and high data
rates. Twelve frame sizes are supported raging from 12 bytes to 216 bytes,
including a 53 byte frame compatible with ATM and a 188 byte frame com-
patible with both MPEG-2 and the original DVB-S standard. The return link
supports data rates from 144 kbps to 2 Mbps and is shared among termi-
nals by using muti-frequency time-division multiple-access (MF-TDMA) and
demand-assigned multiple-access (DAMA) techniques. Eight code rates are
supported, ranging from r = 1/3 to r = 6/7.

Like the turbo codes used in other standards, a pair of constituent RSC
encoders is used along with log-MAP or max-log-MAP decoding [4]. The de-
coder for each constituent code performs best if the encoder begins and ends
in a known state, such as the all-zeros state. This can be accomplished by
independently terminating the trellis of each encoder with a tail which forces
the encoder back to the all-zeros state. However, for the small frame lengths
supported by DVB-RCS, such a tail imposes a non-negligible reduction in
code rate and is therefore undesirable. As an alternative to terminating the
trellis of the code, DVB-RCS uses circular recursive systematic convolutional
(CRSC) encoding [5], which is based on the concept of tailbiting [6]. CRSC
codes do not use tails, but rather are encoded in such a way that the ending
state matches the starting state.

Most turbo codes use binary encoders defined over GF(2). However, to
facilitate faster decoding in hardware, the DVB-RCS code uses duobinary

constituent encoders defined over GF(4) [7]. During each clock cycle, the en-
coder takes in two data bits and outputs two parity bits so that, when the
systematic bits are included, the code rate is r = 2/4. In order to avoid par-
allel transitions in the code trellis, the memory of the encoder must exceed
the number of input bits, and so DVB-RCS uses constituent encoders with
memory three (a constraint length of four).

There are several benefits to using duobinary encoders. First, the trellis
contains half as many states as a binary code of identical constraint length
(but the same number of edges) and therefore needs half as much memory
and the decoding hardware can be clocked at half the rate as a binary code.
Second, the duobinary code can be decoded with the suboptimal but efficient
max-log-MAP algorithm at a cost of only about 0.1-0.2 dB relative to the
optimal log-MAP algorithm. This is in contrast with binary codes, which
lose about 0.3-0.4 dB when decoded with the max-log-MAP algorithm [8].
Additionally, duobinary codes are less impacted by the uncertainty of the
starting and ending states when using tailbiting and perform better than
their binary counterparts when punctured to higher rates.
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Fig. 1. Duobinary CRSC constituent encoder used by DVB-RCS.

1.1 Encoding

The CRSC constituent encoder used by DVB-RCS is shown in Fig. 1. The en-
coder is fed blocks of k message bits which are grouped into N = k/2 couples.
The number of couples per block can be N ∈ {48, 64, 212, 220, 228, 424, 432, 440,
752, 848, 856, 864}. The number of bytes per block is N/4. In Fig. 1, A repre-
sents the the first bit of the couple, and B represents the second bit. The two
parity bits are denoted W and Y . For ease of exposition, subscripts are left
off the figure, but below a single subscript is used to denote the time index
k ∈ {0, ..., N − 1} and an optional second index is used on the parity bits W
and Y to indicate which of the two constituent encoders produced them.

Let the vector Sk = [Sk,1 Sk,2 Sk,3]
T , Sk,m ∈ {0, 1} denote the state of the

encoder at time k. Note that although the inputs and outputs of the encoder
are defined over GF(4), only binary values are stored within the shift register
and thus the encoder has just eight states. The encoder state at time k is
related to the state at time k − 1 by

Sk+1 = GSk + Xk (1)

where

Xk =





Ak + Bk

Bk

Bk



 (2)

and

G =





1 0 1
1 0 0
0 1 0



 (3)

Because of the tailbiting nature of the code, the block must be encoded
twice by each constituent encoder. During the first pass at encoding, the
encoder is initialized to the all-zeros state, S0 = [0 0 0]T . After the block is
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encoded, the final state of the encoder SN is used to derive the circulation

state

Sc =
(

I + GN
)−1

SN (4)

Where the above operations are over GF(2). Note that the matrix I + GN is
not invertible if N is a multiple of the period of the encoder’s impulse response
(which is seven for this encoder). However, this is not a problem because none
of the permitted values of N are multiples of seven. In practice, the circulation
state Sc can be found from SN by using a lookup table (which is specified in
the standard). Once the circulation state is found, the data is encoded again.
This time, the encoder is set to start in state Sc and will be guaranteed to
also end in state Sc.

The first encoder operates on the data in its natural order, yielding parity
couples {Wk,1, Yk,1}. The second encoder operates on the data after it has
been interleaved. Interleaving is performed on two levels. First, interleaving is
performed within the couples, and second, interleaving is performed between
couples. Let {A′

k, B′
k} denote the sequence after the first level of interleaving

and {A′′
k , B′′

k} denote the sequence after the second level of interleaving. In the
first level of interleaving, every other couple is reversed in order, i.e. (A′

k, B′
k) =

(Bk, Ak) if k is even, otherwise (A′
k, B′

k) = (Ak, Bk). In the second level of
interleaving, couples are permuted in a pseudorandom fashion. The exact
details of the second level permutation can be found in the standard [2].

After the two levels of interleaving, the second encoder (which is identical
to the first) encodes the sequence {A′′

k , B′′
k} to produce the sequence of parity

couples {Wk,2, Yk,2}. As with the first encoder, two passes of encoding must be
performed, and the second encoder will have its own independent circulation
state. To create a rate r = 1/3 turbo code, a codeword is formed by first
transmitting all the uninterleaved data couples {Ak, Bk}, then transmitting
{Yk,1, Yk,2} and finally transmitting {Wk,1,Wk,2}. The bits are transmitted
using QPSK modulation, so there is a one-to-one correspondence between
couples and QPSK symbols. Alternatively, the code word can be transmitted
by exchanging the parity and systematic bits, i.e. {Yk,1, Yk,2}, followed by
{Wk,1,Wk,2} and finally {Ak, Bk}.

Code rates higher than r = 1/3 are supported through the puncturing
of parity bits. To achieve r = 2/5, both encoders maintain all the Yk but
delete odd-indexed Wk. For rate 1/2 and above, the encoders delete all Wk.
For rate r = 1/2, all the Yk bits are maintained, while for rate r = 2/3 only
the even-indexed Yk are maintained, and for rate r = 4/5 only every fourth
Yk is maintained. Rates r = 3/4 and 6/7 maintain every third and sixth Yk

respectively, but are only exact rates if N is a multiple of three (otherwise the
rates are slightly lower).
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Fig. 2. A decoder for the DVB-RCS code.

1.2 Decoding

Decoding of the DVB-RCS code is complicated by the fact that the con-
stituent codes are duobinary and circular. As with conventional turbo codes,
decoding involves the iterative exchange of extrinsic information between the
two component decoders. While decoding can be performed in the probability
domain, the log-domain is preferred since the low complexity max-log-MAP
algorithm can then be applied [4]. Unlike the decoder for a binary turbo code,
which can represent each binary symbol as a single log-likelihood ratio, the
decoder for a duobinary code requires three log-likelihood ratios. For exam-
ple, the likelihood ratios for message couple (Ak, Bk) can be represented in
the form

Λa,b(Ak, Bk) = log
P (Ak = a,Bk = b)

P (Ak = 0, Bk = 0)
(5)

where (a, b) can be (0, 1), (1, 0), or (1, 1).
An iterative decoder that can be used to decode the DVB-RCS turbo code

is shown in Fig. 2. The goal of each of the two constituent decoders is to
update the set of log-likelihood ratios associated with each message couple.

In the figure and in the following discussion, {Λ
(i)
a,b(Ak, Bk)} denotes the set

of LLRs corresponding to the message couple at the input of the decoder and

{Λ
(o)
a,b(Ak, Bk)} is the set of LLRs at the output of the decoder. Each decoder is

provided with {Λ
(i)
a,b(Ak, Bk)} along with the received values of the parity bits

generated by the corresponding encoder (in LLR form). Using these inputs
and knowledge of the code constraints, it is able to produce the updated LLRs

{Λ
(o)
a,b(Ak, Bk)} at its output.
As with binary turbo codes, extrinsic information is passed to the other

constituent decoder instead of the raw LLRs. This prevents the positive feed-
back of previously resolved information. Extrinsic information is found by
simply subtracting the appropriate input LLR from each output LLR, as in-
dicated in Fig. 2.

The extrinsic information that is passed between the two decoders must
be interleaved or deinterleaved so that it is in the proper sequence at the
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Fig. 3. Trellis associated with the duobinary CRSC constituent encoder used by
DVB-RCS. The numbers on the left indicate the labels (A, B, W, Y ) of the branches
exiting each state. From left to right, the groups of numbers correspond to the
exiting branches from top to bottom.

input of the other decoder. Interleaving and deinterleaving between the two
constituent decoders must be done on a symbol-wise basis by assuring that the
three likelihood ratios {Λ0,1(Ak, Bk), Λ1,0(Ak, Bk), Λ1,1(Ak, Bk)} belonging to
the same couple are not separated.

The trellis for the duobinary constituent code is as shown in Fig. 3. The
trellis contains eight states, with four branches entering and exiting each state.
Note that this is in contrast with a conventional binary code which only has
a pair of branches entering and exiting each state. The trellis contains two
4 by 4 butterflies, and because these two butterflies are independent, they
can be processed in parallel. In the following, the ith state is denoted by
Si where i ∈ {0, ..., 7} for DVB-RCS. Note that the subscript i takes on a
slightly different connotation depending on whether encoding or decoding is
being discussed. When discussing encoding, the subscript was used to indicate
a time step, but when discussing decoding the subscript indicates a particular
state.
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The extension of the log-MAP and max-log-MAP algorithms [4] to the
duobinary case is fairly straightforward. Each branch must be labeled with
the log-likelihood ratios corresponding to the systematic and parity couples
associated with that branch. Because QPSK modulation is orthogonal, the
LLR of message couple (A,B) can be initialized prior to being fed into the

first decoder as Λ
(i)
a,b(Ak, Bk) = aΛ(Ak) + bΛ(Bk), where Λ(C) = log[P (C =

1)/P (C = 0)]. Because extrinsic information about the parity bits is not
exchanged, the parity bits can always be decomposed in a similar manner.
However, for the systematic bits, the three likelihood ratios defined in (5) must
be calculated during each iteration and exchanged between the decoders.

Let γk(Si → Sj) denote the branch metric corresponding to state tran-
sition Si → Sj at time k. The branch metric depends on the message and
parity couples that label the branch along with the channel observation and
extrinsic information at the decoder input. In particular, if transition Si → Sj

is labelled by (Ak, Bk,Wk, Yk) = (a, b, w, y) then

γk(Si → Sj) = Λ
(i)
a,b(Ak, Bk) + wΛ(Wk) + yΛ(Yk) (6)

As with binary codes, the constituent decoder must perform a forward
and a backward recursion. Let αk(Si) denote the normalized forward metric
at trellis stage k and state Si, while α′

k+1(Sj) is the forward metric at trellis
stage k + 1 and state Sj prior to normalization. The forward recursion is

α′
k+1(Sj) = max∗

Si→Sj

{αk(Si) + γk(Si → Sj)} (7)

where the max∗ operation1 is performed over the four branches Si → Sj

leading into state Sj at time k + 1. While the log-MAP algorithm uses the
exact definition of max∗, the max-log-MAP algorithm uses the approximation
max∗(x, y) ≈ max(x, y).

After computing α′
k+1(Sj) for all Sj at time k+1, the forward metrics are

normalized with respect to the metric stored in state zero

αk+1(Sj) = α′
k+1(Sj) − α′

k+1(S0) (8)

Similarly, let βk+1(Sj) denote the normalized backward metric at trellis
state k+1 and state Sj and β′

k(Si) denote the backward metric at trellis state
k and state Si prior to normalization. The backward recursion is

β′
k(Si) = max∗

Si→Sj

{βk+1(Sj) + γk(Si → Sj)} (9)

where max∗ is over the four branches Si → Sj exiting state Si at time k. As
with α, the β’s are normalized with respect to the metric stored in state zero

1 The max∗ operation is defined in [9] as max∗(x, y) = max(x, y)+log(1+e−|x−y|).
Multiple arguments imply a recursion of pairwise operations, i.e. max∗(x, y, z) =
max∗(x, max∗(y, z)).
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βk(Si) = β′
k(Si) − β′

k(S0) (10)

Because the encoders are circular, special care must be taken to initialize
the forward and backward recursions. Since the starting and stopping states
are identical, the code trellis can be visualized as a cylinder (see, for example,
Fig. 1 in [10]). The forward recursion can be interpreted as going around the
cylinder in the clockwise direction and the backward recursion as going around
the cylinder in the counter-clockwise direction.

Several algorithms are presented in [10] for decoding circular/tailbiting
convolutional codes. The most practical algorithm, called algorithm A3 in [10],
begins by initializing the decoder so that all initial states are equally likely. The
forward recursion is initialized so that α0(Sj) = 0,∀Sj . The forward recursion
then cycles through the entire trellis in the clockwise direction. If the encoder
was terminated in a known state, then the forward recursion could halt once
it reaches the end of the trellis. However, since the starting and ending states
are not known, the forward recursion continues around the cylinder a second
time. During the second cycle, the new value of the αk’s are compared against
the same value computed during the first cycle, and the new αk’s are used to
replace the ones from the last cycle. Once all the αk’s are close to the value
from the last cycle, the forward recursion halts. The number of extra trellis
sections beyond the first cycle around the cylinder is called the wrap depth.
For long frames, the wrap depth is typically smaller than the frame length (so
an entire second cycle does not need to be run). However, for short frames,
a third or fourth cycle around the trellis cylinder could be required, i.e. the
wrap depth could exceed N .

The backward recursion is executed in similar manner, with βN (Si) =
0,∀Si and the decoder cycling around the cylinder in the counter-clockwise
direction. After making one lap around the cylinder, the algorithm continues
until the βk’s closely match the values computed during the previous lap.

After the forward and backward recursions have been completed, a full
set of {αk} and {βk} metrics will be stored in memory. The next step is for
the decoder to use these metrics to compute the LLRs given by (5). This is
accomplished by first computing the likelihood of each branch

Zk(Si → Sj) = αk(Si) + γk(Si → Sj) + βk+1(Sj) (11)

Next, the likelihood that message pair (Ak, Bk) = (a, b) is calculated using

tk(a, b) = max∗
Si→Sj :(a,b)

{Zk} (12)

where the max∗ operator is over the eight branches labelled by message couple
(a, b). Finally, the LLR at the output of the decoder is found as

Λ
(o)
a,b(Ak, Bk) = tk(a, b) − tk(0, 0) (13)

where (a, b) ∈ {(0, 1), (1, 0), (1, 1)}.
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After the turbo decoder has completed a fixed number of iterations or met
some other convergence criterion, a final decision on the bits must be made.
This is accomplished by computing the LLR of each bit in the couple (Ak, Bk)
according to

Λ(Ak) = max∗
{

Λ
(o)
1,0(Ak, Bk), Λ

(o)
1,1(Ak, Bk)

}

−max∗
{

Λ
(o)
0,0(Ak, Bk), Λ

(o)
0,1(Ak, Bk)

}

Λ(Bk) = max∗
{

Λ
(o)
0,1(Ak, Bk), Λ

(o)
1,1(Ak, Bk)

}

−max∗
{

Λ
(o)
0,0(Ak, Bk), Λ

(o)
1,0(Ak, Bk)

}

, (14)

where Λ
(o)
0,0(Ak, Bk) = 0. The hard bit decisions can be found by comparing

each of these likelihood ratios to a threshold.

1.3 Simulation Results

In this section, simulation results are presented that illustrate the performance
of the DVB-RCS turbo code. Fig. 4 shows the frame error rate (FER) of sev-
eral decoding algorithms when using blocks of N = 212 message couples (53
bytes) and code rate r = 1/3. One problem with using circular constituent
codes is that the circulation state is unknown at the decoder. The two low-
ermost curves in Fig. 4 show the impact of the unknown circulation state
when using eight iterations of log-MAP decoding. The lowermost curve was
created by using a genie-aided decoder that knows the exact circulation state
of the encoder. While this decoder is not feasible in practice, it serves as a
bound for more practical decoders. The second curve shows the performance
when the circulation state is not known and algorithm A3 from [10] is used
to compensate for the unknown circulation state. Note that the loss due to
imperfect knowledge of the circulation state is only about 0.02 dB at a FER
of 10−4.

The uppermost curve in Fig. 4 shows the performance when using eight
iterations of the max-log-MAP algorithm along with algorithm A3 from [10]
to handle the unknown circulation state. At a frame error rate (FER) of 10−4,
the loss due to using max-log-MAP is only about 0.16 dB. This is in contrast
with the 0.3 − 0.4 dB losses that are incurred when decoding binary turbo
codes with the max-log-MAP algorithm, and for this reason many DVB-RCS
decoder implementations use max-log-MAP [11].

Fig. 5 shows the influence of the block size. Frame error rate results are
shown for blocks of N = {48, 64, 212, 432, 752} message couples, or corre-
spondingly {12, 16, 53, 108, 188} bytes. In each case, the code rate is r = 1/3,
the circulation state is unknown at the decoder, and eight iterations of max-
log-MAP decoding are performed. The SNR required to achieve a FER of 10−4

is Eb/No = {3.02, 2.77, 1.86, 1.65, 1.44} dB for N = {48, 64, 212, 432, 752}, re-
spectively.
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Fig. 4. Influence of decoding algorithm on the performance of the DVB-RCS turbo
code. The frame length is K = 212 (53 bytes) and code rate is r = 1/3. Eight
iterations of decoding are performed. The curve with the best performance shows the
performance of the log-MAP algorithm if the circulation state used by the encoder
were to be known by the decoder. The other two curves show the performance of log-
MAP and max-log-MAP decoding when the decoder does not know the circulation
state and uses algorithm A3 from [10].

Fig. 6 shows the influence of the code rate. Frame error rate results are
shown for all seven code rates when the block size is N = 212 message couples.
As with Fig. 5, eight iterations of max-log-MAP decoding are performed and
the circulation state is unknown at the decoder. The SNR required to achieve
a FER of 10−4 is Eb/No = {1.86, 2.03, 2.37, 3.29, 3.96, 4.57, 5.21} dB for r =
{1/3, 2/5, 1/2, 2/3, 3/4, 4/5, 6/7}, respectively.

2 DVB-S2

The DVB-S2 standard uses a serial concatenation of two binary linear codes:
an outer BCH code and an inner low density parity check (LDPC) code [3].
With binary linear block codes, a k bit message d is encoded into a n bit
codeword c according to

c = dG, (15)

where G is the k by n generator matrix and the matrix multiplication is
modulo-2. The parity-check matrix H is a m = n − k by n matrix that spans
the null space of G and therefore satisfies GHT = 0.
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Fig. 6. Influence of code rate on the performance of the DVB-RCS turbo code.
The code rate is r, block size is N = 212 message couples, and eight iterations of
max-log-MAP decoding are performed.
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LDPC codes are characterized by having very sparse parity check matri-
ces. An LDPC code is said to be regular if all rows in H have the same weight
(number of ones) and all columns in H have the same weight; otherwise the
code is irregular. LDPC codes were originally proposed by Gallager in his
1960 dissertation [12] along with an iterative process for decoding. Although
Gallager proved that the codes were good in theory, they were largely ig-
nored until the advent of turbo codes because the decoder was thought to
be too complex. However, after turbo codes showed the practicality of itera-
tive decoding, interest in LDPC codes was soon renewed. In the mid-1990’s,
MacKay rediscovered LDPC codes [13, 14] and showed that they are capable
of approaching the Shannon limit. Soon afterwards, Richardson and Urbanke
[15] and Luby et al [16] showed that long irregular LDPC codes can be supe-
rior to turbo codes of the same length and can approach the Shannon capacity
by a fraction of a decibel [17].

2.1 Encoding

The DVB-S2 channel encoder begins by first encoding a length k′ binary
message into a n′ bit systematic BCH codeword. The k = n′ BCH codeword
is then encoded into a n bit systematic LDPC codeword. The codeword length
n can be either 64,800 or 16,200 bits long, producing normal and short frames,
respectively. Note that unlike DVB-RCS, which fixes the value of the encoder
input, DVB-S2 fixes the length of the encoder output. Because of this, the
length k′ of the input to the BCH encoder and the length k of the input to
the LDPC encoder (which equals the length n′ of the output of the BCH
encoder) are variable and depend on the rate r of the LDPC code. Normal
frames can be encoded at eleven different code rates, as shown in Table 1. Short
frames can be encoded at all the same code rates except for rate r = 9/10,
which is not supported, as shown in Table 2. For short frames, the “rates”

rate k’ n’ t

9/10 58192 58320 8
8/9 57472 57600 8
5/6 53840 54000 10
4/5 51648 51840 12
3/4 48408 48600 12
2/3 43040 43200 12
3/5 38688 38880 12
1/2 32208 32400 12
2/5 25728 25920 12
1/3 21408 21600 12
1/4 16008 16200 12

Table 1. The input k′ and output n′ word sizes of the outer BCH code used by
normal DVB-S2 frames. Also listed is the error correcting capability t of the BCH
code.
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rate k’ n’ actual r

8/9 14232 14400 8/9
5/6 13152 13320 37/45
4/5 12432 12600 7/9
3/4 11712 11880 11/15
2/3 10632 10800 2/3
3/5 9552 9720 3/5
1/2 7032 7200 4/9
2/5 6312 6480 2/5
1/3 5232 5400 1/3
1/4 3072 3240 1/5

Table 2. The input k′ and output n′ word sizes of the outer BCH code used by short
DVB-S2 frames. Each of these BCH codes has error correcting capability t = 12.
Also listed is the actual rate r = k/16200 of the inner LDPC code.

1/4, 1/2, 3/4, 4/5, and 5/6 are misnomers because the actual rates, as defined
by r = k/n = k/16200 are 1/5, 4/9, 11/15, 7/9 and 37/45, respectively.

For short frames, the BCH code can correct t = 12 errors at the output
of the LDPC decoder, while for normal frames it can correct between t = 8
and t = 12 errors, depending on rate of the LDPC code. The BCH code
requires 168 parity bits for short frames and between 128 and 192 parity bits
for long frames. Thus the overall rate r′ of the concatenated BCH/LDPC code
is slightly lower than that of the LDPC code alone. For instance, short frames
encode messages of length k′ = k − 168 = 16200r − 168 and thus have overall
rate r′ = r − 168/16200.

Unlike with turbo codes, the encoding of LDPC codes can be very complex
if the code is not designed with encoding in mind [18]. This is especially true
for systematic LDPC codes, because a sparse H matrix could require a dense
G matrix. In order to facilitate systematic encoding and produce irregular
LDPC that are especially suitable for high code rates, DVB-S2 uses a class
of LDPC codes called extended irregular repeat accumulate (eIRA) codes [19].
With eIRA codes, the parity check matrix is constrained to be in the form

H = [H1 H2] (16)

where H1 is a sparse m by k matrix and H2 has the form

H2 =

















1
1 1

1 1
· · ·

1 1
1 1

















(17)

Given the constraint on the H matrix, the generator matrix can be ex-
pressed in systematic form as

G = [I P] (18)
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where P = HT
1 H−T

2 and the form of H−T
2 is

H−T
2 =















1 1 · · · 1 1
1 · · · 1 1

. . .
...

...
1 1

1















(19)

The matrix H−T
2 is actually the generator matrix for a differential encoder

(also called an accumulator). Thus the encoding of the DVB-S2 LDPC code
can be accomplished in two stages. First the output of the BCH encoder
d is multiplied by the sparse matrix HT

1 , yielding the intermediate result
p′ = dHT

1 . The standard specifies the matrix HT
1 in the form of a table that

lists the locations of the ones in the sparse matrix HT
1 for each code rate and

length. Next, the intermediate result is differentially encoded yielding the set
of parity bits p = p′H−T

2 . Finally the parity bits and message are combined
into the systematic codeword as c = [d p].

The modulation can be either QPSK, 8PSK, 16APSK, or 32APSK. The
16APSK constellation consists of two concentric rings with 4 uniformly spaced
symbols on the inner ring and 12 uniformly spaced symbols on the outer ring.
The 32APSK adds a third ring outside the 16APSK constellation, with 16
equally spaced symbols along the third ring. For the higher order modulations
(everything except QPSK), a bit interleaver is placed between the channel
encoder and the modulator, and thus the system uses bit interleaved coded
modulation (BICM) [20].

2.2 Decoding

An LDPC code can be decoded iteratively using a message passing algorithm
[14] over a graphical representation of the code’s parity check matrix called a
Tanner graph [21]. A Tanner graph is a bipartite graph consisting of n variable

nodes (v-nodes) and m check nodes (c-nodes). Variable node yj is connected
to check node fi if and only if the (i, j)th entry of H is equal to one. As
an example, consider the systematic (7, 4) Hamming code with parity check
matrix:

H =





1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1



 (20)

The corresponding Tanner graph for this code is shown in Fig. 7.
In the message passing algorithm, messages (in the form of extrinsic infor-

mation) flow up from the variable nodes to the check nodes and down from
the check nodes to the variable nodes. A full description of the decoding al-
gorithm is presented in [22], so here only the main results are presented. The
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f0 f1 f2

y0 y1 y2                          y3                         y4                           y5                            y6

v-nodes

c-nodes

Fig. 7. Tanner graph for the (7, 4) systematic Hamming code. Each row of H is
represented by a check node and each column of H is represented by a function
node.

goal of the decoder is to compute the LLR of the ith code bit, Λ(o)(ci), from
which the systematic bits can be extracted and a hard decision made.

In the following, let qi,j represent the message passed from v-node i to
c-node j and rj,i represent the message passed from c-node j to v-node i. Let
Ci = {j : hj,i = 1} denote the row locations of the 1’s in the ith column of
H and likewise Rj = {j : hj,i = 1} the column locations of the 1’s in the jth

row. The set Rj\i is equal to Rj with i excluded.
Initially, the messages passed from the v-nodes to the c-nodes are set to

the channel likelihood values, i.e. qi,j = Λ(i)(ci). Then each c-node computes
the messages that it sends to every v-node it is attached to according to:

rj,i =





∏

i′∈Rj\i

sign(qi′,j)



φ





∑

i′∈Rj\i

φ (|qi′,j |)



 (21)

where the nonlinear φ(x) function is defined as

φ(x) = − log tanh
(x

2

)

= log

(

ex + 1

ex − 1

)

. (22)

Next, each v-node updates the LLR of its corresponding code bit according
to

Λ(o)(ci) = Λ(i)(ci) +
∑

j∈Ci

rj,i (23)

and then generates the output message sent to every c-node that it is con-
nected to

qi,j = Λ(o)(ci) − rj,i (24)
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A hard decision can be made by simply comparing Λ(o)(ci) to a threshold.
Since LDPC codes are linear block codes, they have a built in error detecting
mechanism. When the estimated codeword ĉ is a valid codeword, then ĉHT =
0 and thus the decoder can halt. If ĉHT 6= 0, then the decoder can iterate by
having each c-node compute new messages to send to the v-nodes according
to (21). Once a maximum number of iterations is reached, the decoder will
quit.

2.3 Simulation Results

In this section, simulation results are presented that illustrate the perfor-
mance of the DVB-S2 LDPC code. Fig. 8 shows the frame error rate (FER)
performance of the short frame size and Fig. 9 shows the FER performance of
normal frame size. In each case, up to 100 iterations of the log-domain sum-
product algorithm [14] described in the last subsection are executed. Table 3
shows the Eb/No required to achieve a FER of 10−3 for each rate and frame
size. Because of the large size of the normal frame size code and the steepness
of the corresponding FER curve, results could not be simulated all the way
down to a FER 10−3 for every code rate. Thus, extrapolated results are given
for rates r = 1/3, 1/2, 2/3 and 5/6. Note that the results presented here are
only for the LDPC code. The outer BCH code used by DVB-S2 helps to clean
up additional errors at the output of the LDPC decoder and will improve the
overall performance (mainly be reducing an error floor that begins to emerge
below the shown error rates).

rate short normal

9/10 N/A 3.78 dB
8/9 3.78 dB 3.68 dB
5/6 3.06 dB 3.03* dB
4/5 2.72 dB 2.68 dB
3/4 2.33 dB 2.18 dB
2/3 1.95 dB 1.86* dB
3/5 1.59 dB 1.36 dB
1/2 0.93 dB 0.85* dB
2/5 0.55 dB 0.54 dB
1/3 0.37 dB 0.22* dB
1/4 0.25 dB 0.13 dB

Table 3. The Eb/No required to achieve FER = 10−3 for the LDPC codes used in
DVB-S2. Values marked with an asterisk (*) are extrapolated from Fig. 9.
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Fig. 8. Frame error rate performance of the n = 16, 200 bit (short frame) LDPC code
used in DVB-S2. The decoder uses 100 iterations of the log-domain sum-product
algorithm.
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Fig. 9. Frame error rate performance of the n = 64, 800 bit (normal frame) LDPC
code used in DVB-S2. The decoder uses 100 iterations of the log-domain sum-
product algorithm.
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3 Putting It All Together

The turbo principle stands to revolutionize the delivery of digital content
via satellite. The future of the DVB project hinges upon turbo-like coding
techniques. The DVB-RCS standard, which uses a circular duobinary turbo
code, provides a return channel for Internet services, thereby instantly mak-
ing satellite a serious competitor to cable modems and DSL. The DVB-S2
standard, which uses LDPC codes, represents a significant improvement in
the satellite downlink. However, for these technological improvements to be a
complete success several hurdles remain. Turbo and LDPC codes are still more
complex than their convolutional and Reed Solomon brethren, and therefore
significant advances in implementation must still come to fruition. In addi-
tion, iteratively decodable codes are more sensitive to channel estimation and
synchronization errors and therefore these issues must be dealt with carefully.

4 About the Simulations

The software to generate the plots in this chapter has been made available
to the public at the http://www.iterativesolutions.com website. The software
runs within matlab, but the key encoding and decoding functions are written
in c for rapid execution and called as c-mex functions from matlab.
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